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Abstract 

I identify the limitations of the Expected Utility Model under severe 
uncertainty when applied to climate change mitigation policy, including its 
inability to incorporate multiple probability distributions, subjective 
probabilities and uncertainty aversion. I argue that Klibanoff et al.’s Smooth 
Ambiguity Model provides a superior means to compare climate policies by 
accounting for the limitations in the Expected Utility Model. I justify applying 
subjective probabilities across objective probabilities to account for 
important information available to the decision-maker. 
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1. Introduction 
 
Climate change is the “biggest threat that modern humans have ever faced” (UN Security 
Council, 2021), and public decision-makers face the task of deciding which policies best 
mitigate the adverse effects. However, despite significant progress in recent decades, we 
are not able to assign precise probabilities to the impact of increased carbon dioxide 
concentrations on the climate (Hausfather, 2018). Consequently, decision-makers must 
choose between policies with wildly varying probability distributions of effectiveness – they 
must choose under ‘severe uncertainty’. In this essay, I outline the limitations of the 
Expected Utility Model in the presence of severe uncertainty and consider the Smooth 
Ambiguity Model proposed by Klibanoff, Marinacci and Mukerji (2005) as an alternative. I 
evaluate the benefits of the model, which include a superior treatment of varying probability 
distributions and an account of uncertainty aversion and subjective probabilities. 
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2. Climate policy choice under the Expected Utility Model 
 
Perhaps the best known and most widely accepted normative theory of decision-making is 
the Expected Utility Model (EUM, hereafter), developed by Leonard Savage (1954). The 
basic idea of the EUM is that one first determines the probability 𝑃 of each state of the world 

(SOTW) 𝜔𝑖, then averages the utilities of the outcomes of each action by the probabilities of 
the state of the world in which they occur. So, the expected utility of action 𝑎 over 𝑛 possible 

states of the world is given by: 

𝑈(𝑎) = 𝐸[𝑢(𝑎)] = ∑ 𝑢(𝑎(𝜔𝑖))

𝑛

𝑖=1

∙ 𝑃(𝜔𝑖) 

The decision-maker then chooses the action with the highest expected utility. For example, 
consider a decision-maker who is choosing between two climate policies in a highly stylised 
environment. 
 

Policy 𝑎1:  do nothing. 

 
Policy 𝑎2:  limit carbon dioxide concentrations in the atmosphere. 

 
 
Suppose there are two states of the world: 
 

SOTW 𝜔1:  the climate has a low sensitivity to increased carbon dioxide 

concentrations. 
 
SOTW 𝜔2:  the climate has a high sensitivity to increased carbon dioxide 

concentrations. 
 
 

For which the probability distribution is: 
 

𝑃(𝜔1) = 0.1  
 
𝑃(𝜔2) = 0.9  
 

The utility derived from doing nothing if the state of the world turns out to be that the climate 
has low sensitivity to increased CO2 concentrations is 0 – there is no utility derived from the 
action, but there is no harm either. If, however, action is taken to reduce CO2 concentrations 
and it turns out sensitivity is low, resources have been used unnecessarily, so the utility 
derived from this policy is -5. If the state of the world turns out to be that the climate is highly 
sensitive to increased CO2 concentrations, then doing nothing results in a utility of -10 as 
climate-related events wreak destruction. If action is taken to limit CO2 concentrations, the 
resources are still spent, but no further harm is caused by climate-related events, hence the 
utility derived from this action is -5. This information is represented in Table 1. 
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Table 1: Simple Case of the EUM 
 

 
𝜔1 

(P=0.1) 
𝜔2 

(P=0.9) 

𝑢(𝑎1) 0 -10 

𝑢(𝑎2) -5 -5 

 
 
Hence, the expected utility of taking action 𝑎1 is (0.1 × 0) + (0.9 × −10) = −9 and the 

expected utility of taking action 𝑎2 is (0.1 × −5) + (0.9 × −5) = −5. Hence, the decision-

maker would choose action 𝑎2 since the expected utility is higher. This example 
demonstrates the attractiveness of the simplicity of the EUM in known probability situations. 
But now suppose that the decision-maker is presented with not one, but many probability 
distributions. One expert tells her that 𝑃(𝜔1) = 0.001, whilst another tells her that 𝑃(𝜔1) =
0.5, and myriad others give predictions in between. Let those probability distributions which 
are consistent with present information about climate sensitivity form the set Δ, which we 

shall call the set of ‘objective’ probability distributions, following the notational convention 
established by Klibanoff, Marinacci and Mukerji (KMM, hereafter). They are objective in the 
sense that they are data-driven predictions made by experts.  
 
The decision-maker then faces ‘severe uncertainty’ – she cannot assign precise probabilities 
to climate sensitivity. But it is not the case that severe uncertainty implies ignorance (Heal & 
Millner, 2014). To the contrary, we know a great deal about the challenge we face. We know 
that a response of significant size is required, it is simply a question of how significant. 
Therefore, it is not permissible to justify inaction based on uncertainty, as many decision-
makers have. However, if our decision-maker is to use the EUM as we have stated it, she 
must essentially guess which probability distribution is correct. She may have some good 
reason to guess between distributions, for example by considering the past predictive 
success of each expert, but by choosing any single probability distribution to rely on she is 
immediately discarding the information contained in all the others. 
 
This issue essentially divides decision models into two groups: those which consider all 
probability distributions which are consistent with present information, which tend to be more 
complex, and those which discard them and either focus on the extremes or on a single 
‘median’ distribution, which tend to be simpler. In my view, given the existence of, albeit 
many and varying, probability distributions regarding climate sensitivity, discarding them 
risks omitting important information which could help to inform policy decisions. Considering 
this, I shall focus on the former category, and specifically the Smooth Ambiguity Model 
proposed by Klibanoff, Marinacci and Mukerji (2005).  
 
 

3. The Smooth Ambiguity Model 
 

The Smooth Ambiguity1 Model (SAM, hereafter) provides a method that uses the information 
contained in all the distributions which are consistent with present information. It does so by 

 
1 I use the term ‘severe uncertainty’ in the paper to conform with course terminology, but 
‘ambiguity,’ as it is used by KMM, is synonymous. 
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combining all objective probability distributions on the outcomes of an action and generating 
an overall objective expected utility for an action, considering all of the distributions: 
 

𝑈𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒(𝑎) = 𝐸𝜋[𝑢(𝑎)] 

 
 
Where 𝐸𝜋[𝑢(𝑎)] is the expected utility aggregated2 across all probability distributions 𝜋 ∈ Δ. 
One should note that the SAM makes use of the same principles in calculating the expected 
utility under each distribution, and hence it could be seen to be building on the EUM. 
Returning to our decision-maker, this means that each of the distributions she is presented 
with is used to calculate an expected utility for action 𝑎1, and these are aggregated to give a 

single objective expected utility for the action, and likewise for 𝑎2. If desired, we could stop 
here, and simply choose the action with the highest objective expected utility. But so far, we 
have only dealt with what we have called ‘objective’ probabilities – those which are driven by 
data. We have, however, failed to account for a phenomenon known as uncertainty 
aversion. 
 
It is important to take pause here and offer a more thorough treatment of the concept of 
uncertainty aversion. A decision-maker is uncertainty averse if she prefers known risks over 
unknown risks. Indeed, the more uncertainty averse she is, the more weight she will apply to 
the probability distributions which infer low expected utilities. In our case then, the 
uncertainty averse decision-maker is more inclined to insure against the probability 
distributions which predict higher climate sensitivity, and therefore greater damage. There is 
evidence of this attitude in practice. Indeed, the literature is unified on the existence of 
uncertainty aversion as a motivation for climate change mitigation (Dietz, 2014)3. 
Furthermore, one analysis suggests that as much as half the willingness to spend on climate 
mitigation could stem from uncertainty aversion (Millner et al., 2013). It is important to note 
that uncertainty aversion is a different concept from risk aversion, which, if present, is 
accounted for by the utility function in the EUM and the SAM. The SAM accounts for 
uncertainty aversion, in contrast to standard EU models. 
 
The SAM admits uncertainty aversion and takes account of ‘subjective’ probabilities, that is, 
the attitudes that the decision-maker holds over the probability distributions with which she is 
presented. As previously mentioned, this may be due to considerations such as the 
reputation of the researchers who produced the distributions. Such subjective probabilities 
can form an important part of the information to which the decision-maker has access. 
Uncertainty aversion is held towards the distributions themselves. For example, she may 
assign more importance to those distributions which predict higher climate sensitivity, 
insuring against the worst-case scenarios, which not only satisfies an egalitarian concern for 
the worst-off under such conditions but also will be more satisfactory to an uncertainty 
averse public. One might object on the grounds that over-insuring might occur, but the 
advantage of this model is that subjective probabilities are tempered by the objective 
probabilities contained in the objective expectation function above. Such subjective beliefs 
can be represented as a subjective probability distribution over the objective probability 
distributions, and hence we can use a double expectation function to calculate the overall 
expected utility of an action 𝑉(𝑎), which includes both all the objective distributions and the 
subjective probability distribution across it: 

 
2 𝐸𝜋[𝑢(𝑎)] ≐ ∫ 𝑢(𝑎)𝑑𝜋

𝑆
 where 𝑆 is the set of all states of the world. In our simplified example, 

𝑆 consists of a high climate sensitivity world and a low climate sensitivity state of the world. 
3 Whether uncertainty aversion is permissible is a subject of debate, but to discuss this 
debate falls beyond the scope of this paper. For the purposes of this paper, I assume 
permissibility (for justification, see, e.g., Gilboa et al., 2009). 
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𝑉(𝑎) = 𝐸𝜇[𝜙(𝐸𝜋[𝑢(𝑎)])] 

 
Where 𝐸𝜇[∙] captures4 the subjective probabilities 𝜇 across the set of objective probabilities, 

and 𝜙 captures the uncertainty aversion of the decision-maker. Specifically, the more 
concave is 𝜙, the more uncertainty averse the decision-maker (just as concavity in the utility 

function in the EUM infers risk aversion) and likewise a linear 𝜙 implies uncertainty 

neutrality. This follows from the definition of uncertainty aversion since each marginal 
increase in uncertainty yields a smaller expected utility than the last. Hence, we account for 
both considerations in the model. 
 
Oliver (2013) would likely claim that such over-reliance on modelling would be 
counterproductive. However, I believe that the use of this model allows us to capture 
information that would otherwise be missed, and in a matter as sensitive to not only new 
information but also public opinion, using information other than simply the ‘best guess’ 
probabilities is necessary. The advantages of such an approach are that (a) we include all 
the information provided by the probability distributions available to us, weighted to account 
for the preferences of the decision-maker, and (b) we generate smooth rather than kinked 
indifference curves. The appeal of (a) is clear: we do not miss important information, but we 
also allow for the preferences of the decision-maker to temper the impact of distributions she 
considers less ‘important on the final calculation. This could mean that if she is more 
concerned about the impact in states of the world where climate sensitivity is high, she can 
express a preference for distributions that assign a high probability to such states through 𝜇, 
and she can express greater trust in more reputable research through 𝜙. The appeal of (b) is 

more subtle but is the reason why I believe this model is preferable over other models which 
use a range of objective probability distributions. Smooth indifference curves allow for 
greater tractability than kinked curves since they are more responsive to new information. 
 
 

4. Conclusion 
 

This paper has identified three limitations of the Expected Utility Model when applied to 
climate policy decision-making under severe uncertainty. Firstly, it does not allow for the 
incorporation of multiple probability distributions and may discard otherwise useful 
information. Secondly, it does not permit subjective probabilities and hence fails to capture 
information other than that contained in the objective probability distributions, which the 
decision-maker holds, and which may be beneficial to the analysis. Thirdly, it does not 
permit uncertainty aversion, which can lead to genuine concerns of the decision-maker 
being omitted from a comparison of policies. I have evaluated an alternative decision model, 
the Smooth Ambiguity Model, which addresses each of these limitations in turn and provides 
a means by which to allow for the discretions of the decision-maker whilst including all the 
relevant information, and I have defended the use of subjective probabilities as a 
complement to the objective probabilities provided by experts and driven by data. 
 
 
 
 
 
 

 
4 𝐸𝜇[𝜙(𝐸𝜋[𝑢(𝑎)])] ≐ ∫ 𝜙(∫ 𝑢(𝑎)𝑑𝜋

𝑆
)𝑑𝜇

Δ
, such that 𝜇 is the decision-maker’s beliefs over Δ, 

the set of all objective probability distributions. 
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